8x^2+56x+196=676

Simple and best practice solution for 8x^2+56x+196=676 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x^2+56x+196=676 equation:



8x^2+56x+196=676
We move all terms to the left:
8x^2+56x+196-(676)=0
We add all the numbers together, and all the variables
8x^2+56x-480=0
a = 8; b = 56; c = -480;
Δ = b2-4ac
Δ = 562-4·8·(-480)
Δ = 18496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{18496}=136$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-136}{2*8}=\frac{-192}{16} =-12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+136}{2*8}=\frac{80}{16} =5 $

See similar equations:

| 8+7n=36 | | 7p=1(1−p) | | F(x)=-3/4x^2 | | 7x10/2x+10=9/4= | | 15x+-12x=3x | | (10+2x)-3=3+3x | | 12x+-12x=3x | | 6v-(v-3)=18 | | 12(x-20)-((2x-20))=0 | | 5/3y-y=1660 | | 4^(x-1)*(.25)^(3-2x)=(1/8)^x | | 50x-5x^=0 | | x2-54x+405=0 | | -(1-t)^2=-25 | | 7-2x=6+3x | | b-2/8=1 | | (x-1)/2=(2x-8)/6 | | 2y(y-2)=(y+1)(y-6)-2 | | 2x+12+4x+66=180 | | X^2-7x+7=7 | | 10q(q+2)+3(q-3)=5 | | 4/5y+10=0 | | (1-5x)=0 | | (1+5x)=0 | | 4x3+2x-6=0 | | 2=10/x×x-500/2 | | 4x=10x-5000 | | 4x+x-25+50=180 | | 8(x-2)+6x=12 | | 3(t+7)-8t=-4 | | 18x38+15=699 | | 7(s+2)=91 |

Equations solver categories